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The neutral curve for stationary disturbances in 
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The neutral curve for stationary vortex disturbances in rotating-disk flow is 
computed up to a Reynolds number of lo’ using the sixth-order system of linear 
stability equations which includes the effects of streamline curvature and Coriolis 
force. It is found that the neutral curve has two minima: one at R = 285.36 (upper 
branch) and the other at R = 444.88 (lower branch). At large Reynolds numbers, the 
upper branch tends to Stuart’s asymptotic solution while the lower branch tends to 
a solution that is associated with the wave angle corresponding to the direction of 
zero mean wall shear. 

1. Introduction 
The steady flow that exists due to an infinite disk rotating in an otherwise 

quiescent ambient has been the subject of numerous studies. For this problem, the 
Navier-Stokes equations reduce to a system of ordinary differential equations but 
it has been shown (see e.g. Zandbergen & Dijkstra 1977; Lentini & Keller 1980) that 
the solution is not unique. In  the present study, however, we concern ourselves with 
the stability of the first of these solutions, which is also the classical solution (Cochran 
1934) of the von Karmhn problem (1921) and is the one observed experimentally in 
the laminar boundary layer of a rotating disk. 

The velocity distribution given by the von Karmhn solution is subject to inflexional 
instability. In their remarkable study using a china-clay technique, Gregory, Stuart 
& Walker (1955) observed a stationary vortex pattern consisting of about 30 vortices 
between Reynolds numbers of 430 and 530. Using inviscid theory, Stuart calculated 
the number of stationary vortices and concluded that the neglect of viscosity gives 
a number that is almost four times the observed value. However, the predicted wave 
angle was close to that observed. Later, Brown (1959) and Cebeci & Stewartson (1980), 
using the Orr-Sommerfeld equation, respectively found that the critical Reynolds 
numbers were 178 and 176. 

Malik, Wilkinson & Orszag (1981) (hereinafter referred to as MWO) considered the 
effects of Coriolis force, streamline curvature and the radial variation of the mean 
flow by deriving a sixth-order system of equations, and found the effects to be 
strongly stabilizing. Wilkinson & Malik (1983), using hot-wire techniques, mapped 
out the complete wave pattern on the disk and found that the stationary disturbances 
originate from isolated roughness sites on the disk. Mack (1985) computed the wave 
pattern observed in the Wilkinson-Malik experiment using the equations of MWO 
and assuming a white spectrum at the source of the wave pattern. 

In the present study, we compute the neutral curve for a disturbance of zero 
frequency using the equation system of MWO. In $2, we briefly describe the system 
of equations, while the numerical scheme adopted to solve them is given in $3. 
Finally, the results are discussed in $4. 
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2. Analysis 
Consider an infinite plane rotating about its axis with angular velocity 51. We take 

cylindrical coordinates r*, 8, z* with z* = 0 being the plane of the disk and assume 
the fluid to lie in the half-space z* > 0. Let p ,  U, V, W denote the steady-state values 
of pressure and velocity in the r*, 8, z* directions, respectively, in the rotating 
coordinate frame. Von Karman's exact solution of the Navier-Stokes equations for 
steady laminar rotating-disk flow is obtained by setting 

u = r*QF(z), V = r*QG(z), iij = (uQ):H(z),  p = puQRP(z), 

where z = z*(sZ/u):. The Navier-Stokes equations reduce to the following equations 
for F ,  G, H a n d  P :  

(2.1) 
- 

P - (G + 1 )2 + F'H - F" = 0 ; (2.2) 

2F(G+l)+GH-G = 0;  (2.3) 

P + H H - H = O ;  (2.4) 

2 F + H  = 0; (2.5) 

(2.6) 

where the prime denotes differentiation with respect to z. The boundary conditions 
are 

F = 0 ,  G = 0 ,  H = O  ( z = O ) ,  

F=O, G = - 1  (Z-t a). 

Now we study the evolution of infinitesimally small disturbances imposed on the 
steady flow governed by (2.1)-(2.5). Let r,* be the radial location near which 
the analysis is to be made. Using r,* 52 as the reference velocity, S* = (u/B): as the 
reference length, and pr,*2Q2 as the reference pressure, the instantaneous non- 
dimensional velocities u, v, w and pressure p can be written as 

(2.7) 
r 
R 

u(r ,8 , z , t )  =-F(z)+G(r ,8 , z , t ) ,  

(2.8) 

(2.9) 

r 
R 

1 
R 

v(r ,  8, Z, t )  = -G(z) +v"(r, 8, Z, t ) ,  

w(r, 8, Z, t )  = - H ( z )  +G(r ,  8, Z, t ) ,  

(2.10) 

Here the non-dimensional radius is r = r*(51/u)b, the Reynolds number is 

R = r,*(Q/u):, 

and re* corresponds to  r = R. 

respect to the perturbations gives 
Substituting (2.7)-(2.10) in the Navier-Stokes equations and linearizing with 

as r a4 G a 4  H a c  F 2 r 
- + - F- + - - +-- + - .ii - - (G + 1 ) v"+ - F'G 
at R ar ~ a e  R ~ Z  R R R 
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ae r ae ~ a e  Hae F 2 r 
-+-F-+--+--+-C+-(G+l)G+-GG 
at R ar ~ a e  R a Z  R R R 

(2.14) 

The boundary conditions are that 4, v" and 8 vanish at  z = 0, CO. 

For R % 1, (2.11)-(2.14) may be consistently approximated by replacing factors 
of r by R and neglecting terms of order R-2 and smaller. The replacement of r by 
R at this stage of the calculation implies that we neglect some non-parallel-flow 
effects. The neglect of terms of order R-2 and smaller has little effect on the results 
discussed below, as we verified by computations in which they were included. 

Replacing factors of r by R in (2.1 1)-(2.14) gives a set of equations that is separable 
in r ,  8, t so that the perturbation quantities may be assumed to have the form 

(2.15) (4, v", a,@) = (f(z),g(z), h(z) ,  n ( 4 )  exp [i(ar+/3RO--wt)l. 

With this assumption, (2.11)-(2.14) become (not yet dropping terms of order K2)  

1 
R 

i(aF + PG- w ) f +  F'h + ian = - [ f "- A2f- Ff+ 2(G + 1) g - Hf '1 
1 1 

+,[iaf-2i/3g]-- R R3 f, (2.16) 

1 
i(aF+/3G- w )  g + G h  + ibn = [g" - A2g - Fg- 2(G + 1) f - Hg'] 

1 1 +- [iag + 2iBfl- p, (2.17) R2 

(2.18) 
1 i 
R R2 

i(aF +FG- o) h + n' = - [h" - h2h - Hh' - H'h] +-ah, 

[ia+$]f+i/3g+h' = 0,  (2.19) 

where h2 = a2 +$. 
order R-2 and smaller, 

Eliminating n from (2.16)-(2.18) by means of (2.19) gives, neglecting terms of 

[i(D2 - A2)  (D2 -x2)  + R(aF +/3G- w )  (D2 - x2) - R ( D "  +/3G") 

- W ( D 2  - x2) - iH'(D2 - x2)  - iFD2] h + [2(G + 1 ) D + 2G] 7 = 0, (2.20) 

[2(G+ 1) D-iR(aG-/3F')]h+ [i(D2-h2) + R(aF+/3G-w)-iHD-iiF] 7 = 0, (2.21) 

where D = d/&, Z i  = a-i/R, x2 = aE+p" and 7 = ag-jf is proportional to the 
z-component of the perturbation vorticity. The ha1 result, (2.20) and (2.21), is a 
consistent set of stability equations valid to order R-l. Note that, if the Coriolis- 
force and streamline-curvature effects are neglected, the above system reduces to 
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the fourth-order Orr-Sommerfeld equation. Equations (2.20) and (2.21) may be 
represented as a system of first-order equations: 

where 

(2.22) 

and the non-zero elements of the matrix uU are 

U12 = 1, u23 = 1, u34 = 1, 

u41 = - [h2x2 + iR(aF+ PG- w )  x2 + iR(EF" +/3G) + H'P], 

u42 = -HX2, a,, = h2+X2+iR(aP+/3G-o)+H'+F, 

u44 = H, u45 = 2iG, u4, = 2i(G+1), u5, = 1, 

a,, = R(aG'-PF'), ue2 = 2i(G+ l),  

ug5 = A2+iR(aF+PG-ww)+F, a,, = H. 

The boundary conditions at the solid boundary are 

91(0) = @2(0) = 9JO) = 0. (2.23) 

The boundary conditions imposed far away from the surface of the disk are derived 
from the asymptotic form of (2.20) and (2.21) by requiring that all disturbances should 
decay exponentially. The specific form of these boundary conditions is 

where 

44-71 93-x292+Y1'291 = (2.24) 

(2.25) 

#S-Y1@5 = (2.26) 

- 
9 4 +  [ X 2  - (Yl +Y2)193+ [Yl Yz-h(Y1 + Y 2 ) 1 + 2 + ~ Y l Y 2  91 = 0. 

y1 = i H (  co) - [(iH( w ) ) ~  + A2 -iR(B+ w)$,  

yz = +H(co) + [(g?(rn))2 + h2 - iR(/3+ w)?. 

3. Numerical method 
In order to solve the governing equations, we use a compact fourth-order finite- 

difference scheme proposed by Malik, Chuang & Hussaini (1982). The scheme 
is derived by means of the Euler-Maclaurin formula 

In order to  resolve singular layers, we consider two different node distributions. 
First, 

L(k- 1 )  
z -  ( k =  1,2 ,..., N+1), - N s - ( k -  1) 
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where N +  1 is the total number of nodes, s = 1 + L/z,, z ,  the location of the far-field 
boundary, and L a scaling parameter. 

Secondly, 

z, = [ i - c o s { m } J L  K(k- 1) (k  = 1,2,  ..., Nl), (3 .3a)  

and z,= L+[1-cos{ x ( k - N 1 )  }](z,-L) ( k =  N l + l ,  ..., N+l ) .  (3.3b) 
2 ( N - N 1  + 1) 

The results reported in the next section have been obtained using the node 
distribution (3 .2)  unless otherwise mentioned. The values of z,, L and N are chosen 
to be 20, 1.8 and 200, respectively. 

To apply the above compact-difference scheme to (2 .22) ,  we set 

where 

and thus (3 .1)  becomes 

(k  = 2 , 3 ,  ..., N +  1) .  (3.4) 

It is possible to write the above equation system along with the boundary 
conditions (2.23-2.26) in block-tridiagonal form : 

U = M ,  (3.5) 

where L = [A,, B,, C,]. Here A,, B, and C, are 6 x 6 matrices and M is a null matrix. 
Assuming that an estimate of the eigenvalue is available, we solve (3 .5)  directly. To 
avoid trivial solution, inhomogeneous boundary conditions are imposed at the wall. 
Specifically, the boundary condition q5,(0) = 0 is replaced by +3(0) = 1. This is 
equivalent to normalizing the eigensolution by the value of dZh/dz2 at the wall. As 
a result, the system (3.5) is inhomogeneous and the non-trivial solution is obtained 
by using block LU factorization. Newton’s method is then used for an iteration on 
the eigenvalue such that the remaining boundary condition +,(O) = 0 is satisfied. 

To generate a neutral curve (a1 = pi = wi = 0) for a given w,, a solution 4 is first 
obtained for assumed values of a, and B,. (We will drop the subscript r in the following 
discussion.) The corrections Aa and Ap are then determined from the equations 

Here +1(0) is known from the solution 4 just obtained, while the derivatives with 
respect to a and p are obtained by solving 
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FIGURE 1. Neutral curve for disturbances of zero frequency in rotating-disk flow : 
(a )  (a, R)-plane; ( b )  (p, R)-plane; (c) ( E ,  R)-plane. 
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and (3.9) 

The process is repeated until q51(0) vanishes within preassigned tolerances. We see 
that (3.5), (3.8) and (3.9) can be solved with the same LU factorization and both the 
eigenvalue and eigenfunction are obtained. 

In  the next section we present the results of the stability calculations. The 
mean flow was obtained by a fourth-order-accurate Rung-Kutta scheme. The 
computed values of the important mean-flow parameters are F(0) = 0.51023, 
G(0) = -0.61592 and H(m) = -0.884. 
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FIGURE 3. Real and imaginary parts of the eigenfunction and mean-flow profile along the upper 
branch at  R = 285.36, a = 0.38482, /3 = 0.07759. (a) f, g, h are respectively the radial, azimuthal 
and vertical (normal to the disk) components of the eigenfunction. These components have been 
scaled so that the maximum is 1. (b) a F f P G  is the mean flow parallel to the disk in a direction 
that is a t  90" to the vortex axis and af+bg is the eigenfunction in that direction, while h is the 
eigenfunction in the vertical direction. aF'+,YG' is the derivative of the mean flow with respect 
to distance normal to the disk and is proportional to the mean shear stress. 

4. Results and discussion 
The calculated neutral curves for stationary-disturbance-vortex flow in the (a, R)-, 

(p, R)- end (a, R)-planes ( E  = tan-lP/a) are presented in figure 1. The minimum 
critical Reynolds number is 285.36. This value is more accurately calculated than the 
value of 287 reported in MWO. The critical parameters are a = 0.38482, p = 0.077 59, 
E = 11.4'. From the evidence provided by the hot-wire measurements of Wilkinson 
& Malik (1983), Kobayashi, Kohama & Takamadate (1980) and others it can be 
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FIGURE 4. Real and imaginary parts of the eigenfunction and mean-flow profile along the upper 
branch at R 5 15000, a = 0.90337, /? = 0.19572: (a) &Bin figure 3(a); ( b )  &8 in figure 3(b) .  

Z 

concluded that the critical Reynolds number for the onset of the stationary- 
disturbance-vortex flow falls in the range 290 & 20. The calculated value of 285.36 
is then in excellent agreement with the experiment. It should be noted that, if the 
fourth-order Orr-Sommerfeld equation is solved instead of the system (2.22)-(2.26), 
the critical Reynolds number is 175f5 (Brown 1959; Cebeci & Stewartson 1980 and 
MWO), which is well below the observed value. 

Wilkinson & Malik (1983) found that the wave angle is in the range 11°-14'. The 
wave angle of 11.4' at the critical point is therefore within the observed range. 

A notable feature of the neutral curves presented in figure 1 is the appearance of 
a second minimum on the lower branch. This minimum appears at  R = 440.88 with 
the critical parameters being a = 0.13228, B = 0.04672, E = 19.45'. The wavenumber 

10 FLM 184 
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FIQURE 5. Real and imaginary parts of the eigenfunction and mean-flow profile along the lower 
branch at R = 440.88, a = 0.13228, fi = 0.04672: (a) aa in figure 3(a); ( b )  aa in figure 3(b ) .  

6 Z  

and the angle are intriguingly close to the second set of stationary vortices observed 
in the experiment of Fedorov et al. (1976). However, the observed critical Reynolds 
number for these disturbances was even below the critical Reynolds number 285.36 
for the establishment of 30 or so vortices. Mack (1985) also noted the second family 
of zero-frequency solutions in his computations. 

It is interesting to look at the behaviour of the two branches of the neutral curve 
at large Reynolds numbers. The calculations were performed up to R = lo' and the 
results are presented in figure 2. The upper branch tends to the asymptotic solution 
obtained by Stuart (Gregory et aE. 1955). The calculated wavenumber (a2+p)i a t  
R = lo7 is 1.119 and the wave angle is 12.95'. The corresponding inviscid values 
obtained by Stuart were 1.141 and 13.3". The wavenumber therefore drops along the 
upper neutral curve from 1.141 at the inviscid limit to 0.392 at the critical point, while 
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FIGURE 6. Real and imaginary parta of the eigenfunction and mean-flow profile dong the lower 
branch at R = 15000, a = 0.00929, /3 = 0.00614: (a) aa in figure 3((t); (b) aa in figure 3(b) .  

the wave angle only changes from 13.3' to 11.4'. So the original claim by Stuart that 
viscosity has large effect on wavenumber is confirmed. The eigenfunctions at  
R = 285.36 and R = 15000 along the upper branch are plotted in figures 3 and 4, 
respectively. Both figures have two parts : in part (a) f, g and h. are plotted such that 
the maximum value of g is 1 ; and in part (b) af+ /3g and h me plotted normallized 
with the maximum value. In  part (b) of the figures, the mean-flow quantities aF+/3G 
and aF+/3G' are also plotted. It is clear that the critical layer is located in the 
boundary layer where aF+/3G = 0. 

Along the lower branch a t  large Reynolds number, log (a* +$)f behaves like log RX 
where x N -0.53. The wave angle continuously increases along this branch from 

10-2 
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z = 3  

FIGURE 7. Velocity-vector plot showing the structure of stationary disturbance vortices at the flow. 
conditions of figure 3. The actual (physical) view can be obtained by stretching the horizontal axis 
three times and keeping the vertical axis unchanged. 

0 ar + BRO 4n 

FIGURE 8. Velocity-vector plot showing the structure of stationary disturbance vortices at the flow 
conditions of figure 6. The actual (physical) view can be obtained by stretching the horizontal axis 
300 times and keeping the vertical axis unchanged. 

8 = 19.45 at R = 440.88 to E = 38.54 at R = lo7. At R = lo7, a = 0.2841 x and 
/3 = 0.2263 x lop3. The wave angle appears to be tending to 8 = 39.64'; i.e. the 
direction of zero wall mean shear stress. The eigenfunctions at two Reynolds numbers 
(R = 440.88 and R = 15000) along the lower branch are plotted in figures 5 and 6. 
It can be discerned from these figures that wall mean shear stress decreases with 
Reynolds number along the lower branch while the opposite is true along the upper 
branch. The calculations along the lower branch for R > lo6 were performed using 
the node distribution (3.3) with N ,  = i N  and L = 0.5. 

The computed stationary-vortex structure is presented in figure 7. The figure 
contains the vector plot of velocity components 

[aF + PG + a Re { (af + pg) ,373 and [: + a Re { h q ] ,  

where E = exp [i(ar+/3RB)]. The amplitude a was taken to be 0.2 and the eigenfunc- 
tions were from the calculation made at  the critical Reynolds number, R = 285.36. 
The centre of these vortices is located at about z = 1.8, i.e. at 36 yo of the boundary- 
layer thickness. Contrary to the suggestion of Stuart (see Gregory et al. 1955), only 
one set of vortices is present. It is possible that the second set, which could be nearest 
the wall, will have been obliterated by viscosity. It was shown by Wilkinson & Malik 
(1983) that the stationary disturbances originate from isolated roughness sites on the 
disk and the familiar 30 or so vortex pattern emerges only when the different wave 
packets have spread and filled the entire disk circumference. It has been made clear 



Neutral curve for stationary disturbances i n  rotating-disk flow 287 

by the calculations of Mack (1985) that what is observed in the experiment is the 
result of the superposition of the complete zero-frequency azimuthal wavenumber 
spectrum. 

It will be interesting to see the vortex structure along the lower branch of the 
neutral curve. We present such a plot in figure 8, where the vortex structure is shown 
for R = 15000. The centre of these long-wavelength vortices is located at about 
z = 0.7 and it moves closer to the wall as the Reynolds number is increased. The trend 
is opposite along the upper branch. It should be noted that the scale in figures 7 and 
8 was chosen to give the best visual picture. In  order to get an idea of the actual 
length of the vortices with respect to distance normal to the disk, the horizontal axis 
should be stretched three times in figure 7 and 300 times in figure 8. 

This work was sponsored by NASA Langley Research Center under Contract No. 
NAS 1 - 16916. 
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